
Available online at www.sciencedirect.com

ScienceDirect

ICT Express 11 (2025) 1–6

www.elsevier.com/locate/icte

A filter-and-refine approach to lightweight application traffic classification
Ui-Jun Baeka, Jee-Tae Parka, Yoon-Seong Janga, Ju-Sung Kima, Yang-Seo Choib, Myung-Sup Kima,∗

a Department of Computer and Information Science, Korea university, Sejong, Republic of Korea
b Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea

Received 11 April 2024; received in revised form 27 May 2024; accepted 10 June 2024
Available online 13 June 2024

Dataset link: https://github.com/pb1069/Network-Traffic-Classification

Abstract
As application traffic becomes increasingly complex and voluminous, the need for accurate and fast traffic classification is emphasized,

leading to proposals for lightweighting DL-based classifier. Nevertheless, there is still a need for faster and more accurate classification
methods for practical deployment. We propose a new traffic classification mechanism using the Filter-and-Refine approach. The proposed
method was evaluated public dataset using seven baselines and showed 4%p higher accuracy and about 39 times faster classification speed
compared to the state-of-the-art. The source code and dataset are available at https://github.com/pb1069/Network-Traffic-Classification.
© 2024 The Authors. Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Application traffic classification (TC) technology is one of
the most important techniques in the field of network manage-
ment, which distinguishes traffic generated in networks into
various applications or services. By identifying and classifying
application traffic, network administrators can understand traf-
fic patterns, manage network resources efficiently, and detect
malicious applications or attacks. Traffic classification technol-
ogy has evolved from traditional methods such as port-based
classification, deep packet inspection (DPI), and behavior-
based analysis to methods utilizing machine learning (ML) and
deep learning (DL). Recently, a method applying pre-training,
which learns prior information of traffic modality and transfers
it to various downstream tasks, has been proposed, show-
ing high performance on various datasets. However, despite
these achievements, applying the TC model to real-world net-
works still requires meeting desiderata such as effectiveness,
deployability, trustworthiness, robustness, and adaptivity [1].

One of the important challenges related to the aforemen-
tioned desiderata is real-time processing, which requires en-
suring high accuracy while enabling fast classification. The
importance of real-time processing as a significant challenge
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stems from the rapid growth of internet traffic. Gitnux [2]
mentions that global internet traffic is expected to grow at
a compound annual growth rate (CAGR) of 24% between
2021 and 2026, while Cloudflare [3] states that globally,
Internet traffic grew 25% in 2023. Due to the rapid growth
of internet traffic, network administrators need to adopt cost-
effective classification models, leading to a rise in research
about lightweight. According to our investigation, Research on
lightweight techniques can be broadly divided into two cate-
gories: the first is feature optimization, and the second is model
compression. Feature optimization is a method of increasing
the speed of classification by removing or compressing un-
necessary features in classification, utilizing expert knowledge,
feature compression and removal techniques. Recently, meth-
ods utilizing attention mechanisms to remove features have
also been proposed. Model compression encompasses tech-
niques such as pruning, quantization, knowledge distillation,
and neural architecture search, which reduce model size by
eliminating weight redundancy or enhancing efficiency. Many
studies aim to improve classification speed by applying various
lightweight techniques, sacrificing some accuracy in the pro-
cess. This reflects the trade-off relationship between accuracy
and classification speed. While it is generally difficult to
improve both accuracy and classification speed simultaneously,
continuous exploration in this area is necessary.

In this paper, we propose a sequential traffic classification

method that can improve both accuracy and classification
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able 1
ist of abbreviations and their meanings

Acronym Meaning

1D One Dimensional
2D Two Dimensional
BERT Bidirectional Encoder Representations from Transformers
CAGR Compound Annual Growth Rate
CAM Class Activation Mapping
CNN Convolutional Neural Network
DL Deep Learning
DPI Deep Packet Inspection
ET-BERT Encrypted Traffic-BERT
HAST Hierarchical Spatial–Temporal features
IP Internet Protocol
ISCX Information Security Center of Excellence
LSTM Long Short-Term Memory
ML Machine Learning
SAM Self-Attentive Method
SOTA State-Of-The-Art
TC Traffic Classification
Tor The Onion Router
XAI eXplainable Artificial Intelligence
XGB eXtreme Gradient Boosting

speed. Inspired by the Filter-and-Refine approach, our research
involves a sequence of DL and ML models of various sizes
to classify traffic. To enhance the overall classification speed,
multiple models are deployed at each stage based on their
size, and they determine whether to classify the flow or pass
it to the next stage according to the inspection conditions at
each stage. The proposed method was evaluated on publicly
available application datasets, achieving an average 38 times
faster speed while also improving accuracy by 3.9 percentage
points. Our contributions are as follows:

Effective classification. The proposed method enables ef-
ective classification by employing sequential classifier de-
loyment and applying unique conditions checks, ensuring
igh accuracy and fast classification. It demonstrates superior
erformance compared to the state-of-the-art (SOTA).

Enhancing robustness. The sequential deployment of mul-
iple models and condition checks based on model reliabil-
ty help prevent overfitting and improve the generalization
apability of the classification system.

Improving deployability. The proposed method can be
ertically (Replacing with lightweight or heavyweight classifi-
ation models) or horizontally (Adding and removing classifi-
ation models) scaled according to the physical constraints of
arious networks (e.g., time, memory, resources).

The remaining sections of the paper include related works,
ataset descriptions, the proposed method, experimental re-
ults, and conclusion. Acronyms used in this article are listed
n Table 1.

. Related works

The purpose of the Filter-and-Refine method is to remove
significant portion of irrelevant data in a computationally

fficient manner, thereby exchanging some computations in
he refinement step for greater computational time savings in
he filter step [4]. [5] proposed an approximate subsequence
2

Fig. 1. The difference between the original approach and the proposed
method; (a) Original approach, (b) Proposed method.

matching method with Filter-and-Refine applied to improve
the query speed of subsequence matching in databases. The
proposed method filters out most of the subsequences that do
not match the submitted query string using a short index se-
quence generated by hashing the data sequences, significantly
reducing the time for subsequence matching (i.e., refinement
step) of the data sequences.

While our approach is inspired by the Filter-and-Refine ap-
proach, it differs in perspective from the original approach, as
described in Fig. 1. For example, in [5], the task is to retrieve
the necessary data from a large dataset, whereas in application
traffic classification, inference results are required for all input
data. Therefore, in the application traffic classification task,
inference results are accepted for data that meet the conditions,
while the remaining data that do not meet the conditions pass
through the filter. The data that pass through the filter undergo
the same process in subsequent models, and ultimately, the in-
ference results of all data that pass through all filters follow the
inference results of the heaviest model, which performs best.
In the field of application traffic classification, there are two
studies similar to Filter-and-Refine approach. [6] introduces
the Waterfall, which is a staged classifier. Each flow undergoes
inspection for predefined features at each stage, and if the
conditions are met, the classification result is outputted. If the
conditions are not met, the flow moves to the next stage and
undergoes the same process. [7] proposed a Chain architecture
where two modules sequentially perform classification. In the
first stage of Chain, a classifier that performs consensus based
on the results of port-based classification and ML classification
is deployed, and in the second stage, a DPI-based classifier is
deployed. Chain achieved a similar classification accuracy to
baselines but led to a 45% improvement in classification speed.
Both studies ensure high classification speed by sequentially
deploying classifiers and terminating the classification when
consensus conditions are met at each stage. However, neither
study considers the reliability of the deployed classifiers, and
they utilize overly simplistic structures or features that are
unsuitable for handling complex traffic.

To address this issue, the method proposed in this paper
utilizes multiple classifiers that extract various features to
handle diverse characteristics of traffic, achieving fast and
accurate classification through an appropriate combination of
ML and DL models.
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Fig. 2. An example of the proposed method for application traffic classification.
3. Proposed method

3.1. Overall operation

The proposed method is a multi-stage modular architecture
consisting of a combination of DL-based models and ML-
based models. Each ML-based model and DL-based model
is arranged and placed based on its computing resources
(i.e., classification speed) in the proposed architecture, and to
evaluate the effectiveness of the architecture, publicly available
DL models were used. The overall operation of the proposed
method is illustrated in Fig. 2.

The bi-flow is first input to the lightest classification model,
which outputs the predicted class and the probability of be-
longing to that class. Subsequently, the bi-flow is filtered or
passed through based on whether the probability value for
the predicted class exceeds a predefined threshold τ . In the
xample shown in Fig. 2, the bidirectional flow did not satisfy
he conditions of stages 1 through n − 1; as a result, it is
ssigned the class output by the model placed at the rearmost
tage.

.2. Baselines

We adopted six publicly available DL-based baselines and
mplemented one ML-based model for the evaluation of our
roposed method. Wang et al. proposed four DL-based models
or application or malicious traffic classification, including
D-CNN [8], 1D-CNN [9], HAST-1 and HAST-2 [10]. [8]
resents a simple 2D-CNN consisting of two convolution
ayers with pooling layers and one fully-connected layer. It
xtracts two-dimensional spatial features from consecutive
acket bytes within a flow to classify applications. [9] presents
simple 1D-CNN consisting of two convolution layers with

ooling layers and one fully-connected layer. It extracts one-
imensional spatial features from consecutive packet bytes
ithin a flow to classify applications. HAST-1 [10] uses one-
ot encoding for consecutive packet bytes in a flow and
hen extracts one-dimensional spatial features through 1D-
onvolution. HAST-2, on the other hand, one-hot encodes
ach packet byte within a flow and then extracts a 1D-spatial
eature time series through 1D-convolution. The LSTM layer
hen generates temporal features from the spatial feature time
3

series, which is used to predict the class to which the appli-
cation belongs through a fully-connected layer. Xie et al. [11]
proposed SAM, an application classifier that treats the initial
40 bytes of network packets as a language and applies the
self-attention mechanism. SAM consists of one self-attention
layer and one 1D-convolution layer. Lin et al. [12] introduced
ET-BERT, which pretrains on large-scale traffic data using
BERT [13]. The pretrained model is evaluated through transfer
learning on various downstream tasks. To use the output values
of the DL models in the filtering process, a sigmoid function
is added to the back of the baseline models to normalize the
output values to the range of 0 to 1, and these values are used
in the filtering process.

The ML-based baseline uses XGB [14], which is still
widely used due to its strong classification performance, and
the XGB is used with key parameters such as n estimators
set to 100, objective set to binary:logistic, and booster set to
gbtree. Additionally, XGB outputs logits, which represent the
probability of belonging to each class, and these are used in
the filtering process.

3.3. Datasets

To evaluate the proposed method, two publicly available
datasets are used. The first is the ISCX-VPN 2016 dataset [15],
which contains 20 applications and includes encapsulation
task, application type task, and application task. The second
dataset is the ISCX-Tor 2016 dataset [16], which includes 19
applications and has tasks identical to those of the ISCX-VPN
2016. We preprocessed both datasets according to predefined
rules [17] with an additional rule applied to remove flows with
a destination IP of 255.255.255.255., extracting 8764 flows
from the ISCX-VPN 2016 dataset and 7402 flows from the
ISCX-Tor 2016 dataset, and split them into training and testing
datasets in a 7:3 ratio.

4. Experiments

4.1. Overall evaluation

This section provides a comparison of the proposed method
and baselines for the application type task of the ISCX-

VPN 2016 dataset. Table 2 compares the accuracy, f1-score,



U.-J. Baek, J.-T. Park, Y.-S. Jang et al. ICT Express 11 (2025) 1–6

T
R

u
m
p
fl
2
a
s
u
a
L
a
c
d
E
fl
a
a
b

able 2
esults of application type classification in ISCX-VPN 2016.

Model XGB 2DCNN 1DCNN SAM HAST1 HAST2 ETBERT Accuracy f1-
score

Precision Recall Inference
time (ms)[14] [8] [9] [10] [11] [12] [13]

√ 0.853 0.852 0.855 0.853 15
√ 0.791 0.788 0.788 0.791 113

√ 0.806 0.805 0.805 0.806 113
Baselines √ 0.812 0.812 0.812 0.812 146

√ 0.867 0.859 0.861 0.861 1646
√ 0.847 0.847 0.848 0.847 2384

√ 0.846 0.845 0.846 0.846 6663

Use all
model

Threshold 0.87 0.86 0.95 0.89 0.85 0.82 √

0.881 0.881 0.882 0.881 659
Accuracy 95% 82% 68% 61% 0% – 52%
Coverage 71% 12% 2% 8% 1% – 5%

Best
feature

Threshold 0.87 0.86 0.95 0.89 √

0.886 0.887 0.886 0.886 171
Accuracy 95% 82% 68% 61% 59%
Coverage 71% 12% 2% 8% 5%
Table 3
Comparison of classification performance of classification models by dataset
and task.

Dataset Task Model Accuracy Inference
time (ms)

ISCX-
VPN
2016

Application
type

ET-BERT 0.846 6663
best feature 0.886 171

Application ET-BERT 0.812 6663
best feature 0.851 298

ISCX-
Tor
2016

Application
type

ET-BERT 0.944 5626
best feature 0.961 217

Application ET-BERT 0.903 5626
best feature 0.93 336

precision, recall, and inference time between seven baselines
and two architectures for the task of application type clas-
sification. One of the two architectures shown in Table 2 is
an architecture where all models are placed, while the other
is an architecture where heavy models placed at the rear are
removed. In the table, “√” marks the last classification model

sed, and real values represent the threshold applied to each
odel. For example, in the best feature architecture, XGB first

erforms classification for all flows, assigning classes only to
ows with a class probability of 0.87, and passes the rest to
D-CNN. Models including 2D-CNN follow a similar process,
nd the final classification is completed by HAST-1. Threshold
etting methods are described in Section 2. The architecture
sing all models achieves approximately 4% higher accuracy
nd 10 times faster classification speed compared to ET-BERT.
ooking at the coverage at each stage, over 90% of flows
re classified by the first four models, with the remaining 6%
lassified by the last three models. Additionally, the accuracy
rops sharply as we move to later stages. Even in the case of
T-BERT, the accuracy for classifying the remaining 5% of
ows barely exceeds 50%. This indicates that flows remaining
fter classification in each model are challenging to classify,
nd if accurate classification is not possible, it might be
etter to quickly classify them with lighter models. The best
4

feature architecture removes the two heavy models at the rear,
resulting in approximately 3.8 times faster classification and
a slight increase in accuracy. Furthermore, the best feature
architecture achieves about 4% higher accuracy and 38 times
faster classification speed compared to ET-BERT. Table 3
provides overall comparison of classification performance of
classification models by datasets and tasks. There was a sig-
nificant improvement in classification accuracy not only for
the ISCX-VPN 2016 dataset but also for the ISCX-Tor 2016
dataset, along with a substantial enhancement in classification
speed.

4.2. Analysis of model reliability and threshold setting

In an architecture with multiple models, the threshold of
one model can influence the inference results of other models.
Therefore, careful threshold setting is necessary, but this is a
challenging task. We propose a method to set the threshold
based on the reliability of each model. Fig. 3 shows the
reliability diagram of all models except for ET-BERT. The
reliability of a deep learning model ensures that users can trust
the model’s outputs, while confidence indicates how certain
the model is about its outputs. This is illustrated in a reliability
diagram that evaluates how well-calibrated the predicted prob-
abilities of a classification model are. A perfectly calibrated
model is represented by a diagonal line, meaning that if the
model predicts a class with 70% probability, the frequency
of successful predictions for that class should be 70%. Ac-
cording to the results predicted by SAM for VoIP flows, all
flows within the set predicted with over 80% probability were
successful, indicating that the model is “overconfident” in
its predictive ability. If the threshold is set low, the model
will have high acceptance capacity and low accuracy; if set
high, it will have low acceptance capacity and high accuracy.
The proposed method aims to maximize the actual prediction
accuracy by selecting a threshold candidate where the model’s
confidence slope increases and then decreases, represented by
the red vertical lines in each plot. Although the proposed ar-

chitecture aims for efficiency, it must guarantee high accuracy,
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Fig. 3. Reliability diagram for baseline models with train dataset for application type task; The red vertical dashed lines represent threshold candidates based
on the slope of the average True Probability. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. 4. Comparison of baseline model (w/ threshold) coverage rates by application type.
so the last candidate among the derived threshold candidates
is set as the final threshold.

4.3. Analysis of model coverage

This section provides an analysis of the models’ coverage.
Fig. 4 visualizes the flows that each model correctly predicted
with the applied threshold for each application type. The
x-axis represents the index of each flow, and the distances
between flows are adjusted for convenience. Overall, the error
rate is highest for the Chat type, while for the other application
types, over 90% of flows are accommodated by at least one
model. From a model perspective, it should be noted that ET-
BERT has the highest accuracy, but this is considering the
results without applied thresholds. XGB shows high accep-

tance rates in most application types, making it an excellent

5

pre-classifier for less challenging flows. HAST-1 and HAST-
2 do not exhibit high accuracy in most application types.
However, HAST-1 can classify flows that are not classified
correctly by all models in the Chat type. Similarly, SAM
can classify some flows that are not correctly classified by
other models, which is observable in the Email type and
File Transfer. This suggests that the combination of models
using different feature extraction methods can enhance the
generalization ability of the model.

5. Conclusion

This paper proposes a lightweight method and architecture
for sequential deployment and classification of ML and various
DL models. Our research is inspired by the filter-and-refine
method, successfully achieving lightweighting by processing
large amounts of data through lightweight models and han-

dling the remaining, more challenging data in heavier models
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t the rear. Additionally, we propose a method for generating
nitial thresholds by analyzing model reliability during the
raining process to ensure reliable classification by the forward

odels. The proposed method was implemented and compared
onsidering seven baselines, and evaluated on the publicly
vailable dataset ISCX-VPN 2016. As a result, the best feature
rchitecture showed 4% higher accuracy and 38 times faster
lassification speed compared to the ET-BERT in application
ype classification tasks, and 3.9% higher accuracy and ap-
roximately 22 times faster classification speed in application
lassification tasks. The proposed method not only improves
ccuracy and speed but also greatly reduces the dependency on
ccuracy–speed trade-offs, making it highly scalable through
he application of models with various characteristics.

Our future research can be summarized into two main
oints. First, by applying XAI to each classifier, we aim to
ain insights into classification results, providing explainabil-
ty and reliability to network operators. Additionally, feature
nalysis and selection processes using XAI techniques such
s class activation mapping (CAM) [18,19] and self-attention
echanisms can improve the efficiency and generalization

erformance of each classifier. Second, optimizing the clas-
ification order is crucial as the order significantly impacts
ccuracy and classification speed. While our proposed method
rioritizes classification speed by deploying faster models first,
he classification order can be adjusted or optimized based on
arious requirements and constraints.
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